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ABSTRACT: Single nucleotide polymorphisms (SNPs) are
the most common form of genetic variation in humans.
The number of SNPs identified in the human genome is
growing rapidly, but attaining experimental knowledge
about the possible disease association of variants is
laborious and time-consuming. Several computational
methods have been developed for the classification of
SNPs according to their predicted pathogenicity. In this
study, we have evaluated the performance of nine widely
used pathogenicity prediction methods available on the
Internet. The evaluated methods were MutPred, nsSNPA-
nalyzer, Panther, PhD-SNP, PolyPhen, PolyPhen2, SIFT,
SNAP, and SNPs&GO. The methods were tested with a set
of over 40,000 pathogenic and neutral variants. We also
assessed whether the type of original or substituting amino
acid residue, the structural class of the protein, or the
structural environment of the amino acid substitution, had
an effect on the prediction performance. The performances
of the programs ranged from poor (MCC 0.19) to
reasonably good (MCC 0.65), and the results from the
programs correlated poorly. The overall best performing
methods in this study were SNPs&GO and MutPred, with
accuracies reaching 0.82 and 0.81, respectively.
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Introduction

Most human genetic variation is represented by single
nucleotide polymorphisms (SNPs), and many of them are believed
to cause phenotypic differences between individuals. Owing to the
application of high-throughput sequencing methods, the number
of identified variants in the human genome is growing rapidly, but
identifying those variations responsible for specific phenotypes is
a laborious task. The ability to discriminate between pathogenic
and benign variants computationally could significantly aid
targeting disease-causing mutations by helping in the selection

and prioritization of likely candidates from a pool of data.
A subset of SNPs occur at protein coding regions in the genome,
and from a medical point of view particularly interesting ones are
the nonsynonymous SNPs (nsSNPs) that lead to an amino acid
substitution at the protein level (referred here to as missense
variants). nsSNPs may affect gene function through their effect on
the structure and/or function of the encoded protein.

Prediction of the possible disease-association of missense
variants is a difficult problem because an amino acid substitution
can affect the biological function of a gene product in a number of
ways [Thusberg and Vihinen, 2009]. An amino acid substitution
may disrupt sites that are critical in protein function, such as
catalytic residues or ligand-binding pockets. A missense mutation
may as well lead to alterations in the structure, folding, or stability
of the protein product, thereby altering or preventing the function
of the protein. On the other hand, amino acid substitutions do
not necessarily affect protein function. Effects of missense
mutations are often the most difficult to predict while the
consequences of most deletions, insertions, and nonsense muta-
tions are rather self-evident.

Many methods have been developed for the computational
prediction of the phenotypic effect of nsSNPs. Some of them are
for the study of very specific mechanisms, whereas others are
developed to predict whether a variation is harmful or benign. All
of the variation tolerance methods evaluated in this study follow a
similar procedure in which a missense variant is first labeled with
properties related to the damage it may cause to the protein
structure or function. The resulting feature vector is then utilised
to decide whether the variant is pathogenic or not. The methods
differ in the properties of the variant they take into account in the
prediction, as well as in the nature and possible training of the
classification method used for decision making. The nine widely
used methods evaluated in this study are based on evolutionary
information (Panther [Thomas et al., 2003], PhD-SNP SVM-
Profile [Capriotti et al., 2006], and SIFT [Ng and Henikoff,
2001]), or a combination of protein structural and/or functional
parameters and multiple sequence alignment derived information
(MutPred [Li et al., 2009], nsSNPAnalyzer [Bao et al., 2005],
PolyPhen [Ramensky et al., 2002], PolyPhen2 [Adzhubei et al.,
2010], SNAP [Bromberg and Rost, 2007], and SNPs&GO
[Calabrese et al., 2009]). The machine-learning methods utilize
neural networks (NN) (SNAP), random forests (RF) (MutPred,
nsSNPAnalyzer), or support vector machines (SVMs) (PhD-SNP,
SNPs&GO) for classification, whereas the other methods classify
variants according to empirically derived rules (PolyPhen),
Bayesian methods (PolyPhen2), or mathematical operations
(SIFT, Panther) (Table 1).
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As mutation data and information about the genotypes of
individuals accumulate, understanding the molecular level effects
of variations and elucidating their possible disease association is an
important research challenge [Karchin, 2009; Mooney, 2005; Ng
and Henikoff, 2006; Steward et al., 2003; Thusberg and Vihinen,
2009]. Numerous locus-specific databases (LSDBs) have been
established for the collection, analysis, and distribution of disease-
related variation information in certain genes. Data for several
genes is available, for example, in the protein knowledgebase
SwissProt [Yip et al., 2004] and PhenCode [Giardine et al., 2007],
which is a database that connects human variant data with
phenotypic information from LSDBs with genomic data from the
ENCODE project and other resources in the UCSC Genome
Browser [Raney et al., 2011]. SNP information is available in
dbSNP [Sherry et al., 2001], a genetic variation database. Several
tools for the prediction of the phenotypic consequences of
missense variants are available, but without knowledge about the
quality of predictions, choosing the best method and evaluating
the reliability of its outcome is impossible. We therefore performed
the first comprehensive systematic evaluation of nine bioinfor-
matics tools predicting the phenotypic effects of missense variants.

Materials and Methods

Datasets

We built a positive dataset (referred to as pathogenic dataset) of
19,335 missense mutations from the PhenCode database [Giardine
et al., 2007] (downloaded in June 2009), registries in IDbases
[Piirilä et al., 2006] and from 18 individual LSDBs, and a negative
(neutral) dataset of 21,170 human nonsynonymous coding SNPs
with an allele frequency 40.01 and chromosome sample count
449 from the dbSNP database [Sherry et al., 2001] build 131. The
SNP data was filtered so that none of the dbSNP entries included in
our dataset contained OMIM links to minimize the number of
disease-associated SNPs in the neutral dataset. Entries annotated as
‘‘putative’’ or ‘‘predicted’’ were also left out. In addition, the
neutral dataset was searched against the pathogenic dataset in
order to remove possible duplicates and further minimise the
probability of having false negative cases in the set. The PhenCode
data was filtered so that only SNPs annotated as disease causing in
the SwissProt database were taken into our pathogenic dataset.
Swiss-Prot provides high-quality hand-curated information about

the possible disease-relation of nsSNPs, derived from literature
[Yip et al., 2008]. The complementing LSDB data was retrieved
manually from each database. The pathogenic and neutral datasets
contained 1,190 and 9,011 proteins, respectively, of which 445 and
1,205 were found to have three-dimensional structure coordinates
in the Protein Data Bank (PDB) [Berman et al., 2000]. The datasets
are available for download at our Website (http://bioinf.uta.fi).

Both datasets were run by all of the nine methods studied here.
The number of results from nsSNPAnalyzer is much smaller than
the original number of cases in the input data, because the
program only accepts mutations in those sequences for which a
homologous protein is found in the ASTRAL database [Chandonia
et al., 2004]. A large number of proteins in our dataset did not
match with any entry in the database, thus limiting the number of
cases that could be analysed by nsSNPAnalyzer.

Two kinds of subdatasets were constructed from the original
pathogenic and neutral datasets. First, a structural subdataset was
compiled from the part of both datasets for which structural data
was available in the PDB, to study the effect of available structure
data on prediction performance. Second, for probing the effect of
using Swiss-Prot-derived data as part of the pathogenic testing set,
we constructed a subdataset containing only pathogenic variants
not present in Swiss-Prot. The corresponding neutral dataset was
compiled by randomly selecting an equal number of variants from
the original neutral test set.

To test whether the differences in method performance with
these subdatasets was caused by smaller testing set size, we
constructed 100 sample datasets each containing 1,000 pathogenic
and 1,000 neutral variants randomly picked from the original
datasets, and compared the average MCCs obtained with the
MCCs from the subdatasets.

The Pathogenic-or-not Pipeline (PON-P) [Thusberg and Vihinen,
2009] was used for the submission of sequences and variants into
the analysis programs nsSNPAnalyzer, Panther, PhD-SNP, PolyPhen,
PolyPhen2, SIFT, and SNAP. PON-P is a service that simultaneously
submits the input data provided by the user to selected prediction
methods. MutPred and SNPs&GO were run locally at the
corresponding laboratories by the developers of the methods.

Prediction Methods

The effects of mutations and SNPs were predicted by the
programs MutPred [Li et al., 2009], nsSNPAnalyzer [Bao et al.,

Table 1. Summary of the Evaluated Methods

Method Based on Training set Conservation analysis Structural attributes Annotations Website

MutPred RF HGMD, Swiss-Prot SIFT, Pfam, PSI-BLAST Predicted attributes – http://mutpred.mutdb.org/

nsSNPAnalyzer RF Swiss-Prot SIFT Homologue mapping – http://snpanalyzer.uthsc.edu/

Panther Alignment

scores

– Panther library, HMMs – – http://www.pantherdb.org/tools/

csnpScoreForm.jsp

PhD-SNP SVM Swiss-Prot Sequence environment,

sequence profiles

– – http://gpcr2.biocomp.unibo.it/cgi/

predictors/PhD-SNP/PhD-SNP.cgi

PolyPhen Empirical rules – PSIC profiles Homologue

mapping/predictions

Swiss-Prot http://genetics.bwh.harvard.edu/pph/

PolyPhen2 Bayesian

classification

Swiss-Prot, neutral

pseudo-mutations

PSIC profiles Homologue

mapping/predictions

Pfam domain http://genetics.bwh.harvard.edu/pph2/

SIFT Alignment

scores

– MSAs – – http://sift.jcvi.org/

SNAP NN PMD, neutral

pseudo-mutations

PSIC profiles, Pfam,

PSI-BLAST

Predictions – http://rostlab.org/services/snap/

SNPs&GO SVM Swiss-Prot Sequence environment,

sequence profiles, Panther

– GO http://snps-and-go.biocomp.unibo.it/

snps-and-go/

GO, Gene Ontology; HGMD, Human Gene Mutation Database; HMM, Hidden Markov model; NN, neural network; MSA, multiple sequence alignment; PMD, Protein
Mutant Database; PSIC, position-specific independent counts; RF, random forest; SVM, support vector machine.
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2005], Panther [Thomas et al., 2003], PhD-SNP [Capriotti et al.,
2006], PolyPhen [Ramensky et al., 2002], PolyPhen2 [Adzhubei
et al., 2010], SIFT [Ng and Henikoff, 2001], SNAP [Bromberg and
Rost, 2007], and SNPs&GO [Calabrese et al., 2009]. Key properties
of the methods are listed in Table 1. The default parameters of all
programs were applied, and only the protein sequence and missense
variant were given as input information for each program, as in a
normal user situation of unknown variant analysis.

MutPred

MutPred is a Random Forest-based classification method that
utilizes several attributes related to protein structure, function,
and evolution. MutPred utilizes the SIFT method [Ng and
Henikoff, 2003] for defining the evolutionary attributes, along
with PSI-BLAST, transition frequencies [Bromberg and Rost,
2007], and Pfam profiles [Finn et al., 2010]. In MutPred,
structural descriptors include prediction of secondary structure
and solvent accessibility by the method PHD [Rost, 1996],
transmembrane helix prediction by TMHMM [Krogh et al., 2001],
coiled-coil structure prediction by MARCOIL [Delorenzi and
Speed, 2002], stability prediction by I-Mutant 2.0 [Capriotti et al.,
2005], B-factor prediction [Radivojac et al., 2004], and disorder
prediction by DisProt [Peng et al., 2006]. Function-related
attributes include predictions of DNA-binding residues [Ahmad
et al., 2004], catalytic residues, calmodulin-binding targets
[Radivojac et al., 2006], and posttranslational modification sites
[Daily et al., 2005; Iakoucheva et al., 2004; Radivojac et al., 2010].
The MutPred method estimates effects of an amino acid
substitution on the set of defined properties of a protein and based
on those estimates, predicts whether an amino acid substitution is
likely to have phenotypic effects.

nsSNPAnalyzer

nsSNPAnalyzer is a machine-learning method that integrates
multiple sequence alignment (MSA) and protein structure analysis
to classify missense variants. The input protein sequence is
searched against the ASTRAL database [Chandonia et al., 2004]
for homologous protein structures, and extracts features of the
environment of the substitution from the obtained structure,
namely, the solvent accessibility, environmental polarity, and
secondary structure. The SIFT method [Ng and Henikoff, 2003] is
used for calculating the normalised probability of the substitution
in the MSA, and the similarity and dissimilarity between the
mutated, that is, original, and mutant residue is also taken into
account. The program then uses a Random Forest classifier
trained by a dataset prepared from the Swiss-Prot database [Yip
et al., 2004] to classify the variant to be disease-associated or
functionally neutral.

Panther

The Panther Evolutionary Analysis of Coding SNPs (referred
simply to as Panther in this article) calculates substitution
position-specific evolutionary conservation (subPSEC) scores
based on alignments of evolutionarily related proteins to predict
the pathogenicity. The alignments are obtained from the
PANTHER library of protein families based on Hidden Markov
Models (HMMs). The subPSEC score describes the amino acid
probabilities, in particular, positions among evolutionarily related
sequences, and the values range from 0 (neutral) to about �10

(most likely to be deleterious). The cutoff for classifying a
missense variant to be pathogenic can be defined by the user, but
the authors of the method advice to use a cutoff of �3 for
classification [Thomas et al., 2003].

PhD-SNP

PhD-SNP is a prediction method based on single-sequence and
sequence profile based support vector machines trained on Swiss-
Prot variants [Yip et al., 2004]. The single-sequence SVM (SVM-
Sequence) classifies the missense variant to be pathogenic or
neutral based on the nature of the substitution and properties of
the neighboring sequence environment. The profile-based SVM
(SVM-Profile) utilizes sequence profile information taken from
MSAs, and classifies the variant according to the ratio between the
frequencies of the wild-type and substituted residue. A decision
tree algorithm chooses which one of the two SVMs described
above is to be used at each case based on the occurrence of wild-
type and mutant amino acids at the given position.

PolyPhen

PolyPhen (Polymorphism Phenotyping) uses a rule-based cutoff
system to classify variants. It initially characterises the input
missense variant by various sequence, structure, and phylogeny
based descriptors. The sequence-based characterisation includes
SWALL database [Johnson and Todd, 2000] annotations for
sequence features, a transmembrane predictor TMHMM [Krogh
et al., 2001] and PHAT [Ng et al., 2000] transmembrane-specific
matrix score for substitutions at predicted transmembrane regions,
the Coils2 program [Lupas et al., 1991] for prediction of coiled coil
regions, and the SignalP [Nielsen et al., 1997] program to predict
signal peptide regions. Phylogenetic information is derived by
constructing a profile matrix from aligned sequences by the PSIC
(Position-Specific Independent Counts) software [Sunyaev et al.,
1999]. The structural descriptors are obtained by mapping the
missense variant onto the corresponding or similar protein and
then using the DSSP program [Kabsch and Sander, 1983] for
secondary structure information, solvent-accessible surface, and
j–c dihedral angles. In addition, PolyPhen calculates the normal-
ized accessible surface area and changes in accessible surface
propensity resulting from the amino acid substitution, change in
residue side chain volume, region of the Ramachandran map,
normalized B factor, and loss of a hydrogen bond according to the
Hbplus program [McDonald and Thornton, 1994]. The SWALL
database annotations are utilized in the structure analysis such that
the program checks whether the substitution site is in spatial
contact with critical residues annotated to be involved in forming
binding sites or active sites. Additionally, the contacts of the
substituted residue with ligands or subunits of the protein molecule
are checked. After characterising the variant, PolyPhen applies
empirically derived rules based on the characteristics to predict
whether a missense variant is damaging or benign.

PolyPhen2

PolyPhen2 utilizes a combination of sequence- and structure-
based attributes for the description of an amino acid substitution,
and the effect of mutation is predicted by a naive Bayesian classifier.
The sequence-based features include PSIC scores and MSA proper-
ties, and position of mutation in relation to domain boundaries as
defined by Pfam [Finn et al., 2010]. The structure-derived features
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are solvent accessibility, changes in solvent accessibility for buried
residues, and crystallographic B-factor.

SIFT

SIFT (Sorting Intolerant From Tolerant) makes inferences from
sequence similarity using mathematical operations. SIFT con-
structs an MSA and considers the position of the missense variant
and the type of the amino acid change. Based on the amino acids
appearing at each position in the MSA, SIFT calculates the
probability that a missense variant is tolerated conditional on the
most frequent amino acid being tolerated.

SNAP

SNAP (Screening for Nonacceptable Polymorphisms) is a neural
network-based tool for the prediction of the effect of a missense
variant. The method utilises evolutionary information from PSI-
BLAST [Altschul et al., 1997] frequency profiles and PSIC [Sunyaev
et al., 1999], transition frequencies for mutations, biophysical
characteristics of the substitution, secondary structural informa-
tion, and relative solvent accessibility values predicted by PROFsec/
PROFacc [Rost, 1996; Rost and Sander, 1994], chain flexibility
predicted by PROFbval [Schlessinger et al., 2006], protein family
evolutionary information, and information about domain bound-
aries from Pfam [Finn et al., 2010], and Swiss-Prot annotations
[Bairoch and Apweiler, 2000] to classify a missense variant. The
training sets for the NN were constructed from Protein Mutant
Database (PMD) [Kawabata et al., 1999] data complemented by a
set of neutral pseudomutations generated by the authors of the
method as described in Bromberg and Rost [2007].

SNPs&GO

SNPs&GO is an SVM classifier based on mutation type and
sequence environment information, sequence profiles taken from
MSAs, predictions from the program Panther [Thomas et al.,
2003], and a function-based log-odds score describing informa-
tion about protein function defined by Gene Ontology (GO)
terms [Ashburner et al., 2000].

From the output of the programs, we only took the binary
prediction (pathogenic/neutral) into consideration without taking
into account any confidence values provided by some of the
programs. Panther provides a numerical output rather than a
binary classification (subPSEC score), which we converted to a
binary prediction using a cutoff point of �3 as recommended in
[Thomas et al., 2003]. PolyPhen and PolyPhen2 classify the effects
of a missense variant into three categories: ‘‘Probably pathogenic,’’
‘‘Possibly pathogenic,’’ and ‘‘Benign.’’ We converted these into
binary classifications in two ways, first by considering only the
‘‘Probably pathogenic’’ class as pathogenic and the ‘‘Possibly
pathogenic’’ and ‘‘Benign’’ classes as neutral, and second, by
considering both the ‘‘Probably pathogenic’’ and ‘‘Possibly
pathogenic’’ classes as pathogenic, and the ‘‘Benign’’ class as
neutral. These two ways of classifying the variants are referred to
as PolyPhen(2)a and PolyPhen(2)b in this study, respectively.

Determination of Secondary Structural Elements
and Accessible Surface Areas

The 3D structure coordinates of proteins were obtained from the
PDB. Secondary structural information and accessible surface area

(ASA) values for each mutation site were assigned by the program
STRIDE [Frishman and Argos, 1995]. We classified residues with
ASAs r10% as buried and with ASAs Z25% as exposed, similarly
as in a previous study [Khan and Vihinen, 2010].

Determination of Structural Classes of Proteins

The CATH database version 3.3 [Orengo et al., 1997] was used
to group studied proteins according to their secondary and
tertiary structure types.

Statistical Analyses

The quality of the predictions is described by six parameters:
accuracy, precision, sensitivity, specificity, negative predictive
value (NPV) and Matthews correlation coefficient (MCC). In
the following equations, tp, tn, fp, and fn refer to the number of
true positives, true negatives, false positives and false negatives,
respectively.

Accuracy ¼
tp1tn

tp1tn1fp1fn

Precision ¼
tp

tp1fp

Specificity ¼
tn

fp1tn

Sensitivity ¼
tp

tp1fn

NPV ¼
tn

tn1fn

MCC ¼
tp� tn� fn� fpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðtp1fnÞðtp1fpÞðtn1fnÞðtn1fpÞ
p

The MCC [Matthews, 1975] is a very important evaluation
statistic as it is unaffected by the differing proportion of neutral
and pathogenic datasets predicted by the different programs.
Because of its insensitivity to differing test set sizes, it gives a more
balanced assessment of performance than the other performance
measures [Baldi et al., 2000].

To be able to correlate the quality parameters for different
programs with different sizes of test sets containing different
amounts of pathogenic and neutral cases, the numbers of neutral
cases were normalized to be equal to the number of pathogenic
cases for each program.

Substitution statistics for both the pathogenic and neutral
datasets were analyzed by comparing the frequencies of the
substitutions with the expected values that were calculated using
the distribution of all amino acids in the datasets. For the original
residues, the expected values were calculated with regard to their
codon diversity thereby taking into account all possible amino
acid substitutions. The chi-square test was used to determine the
significance of the results and chi-square was calculated as:

w2 ¼
X ðfo � feÞ

2

fe

where fo is the observed frequency and fe is the expected frequency
for an amino acid. The p-values were estimated in a one-tailed
fashion.

Correlations between the program outputs were calculated by
counting all of the common cases and those predicted correctly,
and using Spearman’s rank correlation coefficient.
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Results

Test Set Features

The distributions of mutated and mutant amino acids in both
pathogenic and neutral datasets are biased (Table 2), and only a few
residues occur as expected on the grounds of codon diversity. In the
pathogenic dataset (mutation data), A, C, G, M, R, W, and Y are
overrepresented among the original (mutated) amino acid residues,
whereas E, F, I, K, L, N, Q, S, T, and V are significantly
underrepresented. These results are in line with previous observa-
tions for distributions of disease-causing mutations in protein
secondary structural elements [Khan and Vihinen, 2007], except for
the overrepresentation of A and Y, and underrepresentation of L, N,
S, and V in our data. In the neutral dataset, the distributions of
many amino acids differ from the distributions in the pathogenic
set. Most importantly, cysteines are highly underrepresented among
the substituted positions, as opposed to their frequent mutation in

the pathogenic dataset. This might be due to the important role of
cysteines in folding of many proteins as they are capable of forming
disulphide bonds, and therefore the substitution of cysteines in
proteins transported through endoplasmic reticulum by any other
residue can rarely be neutral in terms of protein structure and
function. Other differences between the datasets are the under-
representation of mutated glycine, tryptophan, and tyrosine
residues in the neutral set as opposed to their frequent mutation
in the pathogenic set, and the overrepresentation of isoleucine,
asparagine, threonine, and valine residues in the neutral variation
data, contrasting their underrepresentation in the mutation data.

The distributions of mutant or substituting amino acids are also
very biased in both pathogenic and neutral datasets, and the
amino acid residues I, P, R, T, V, and Y have opposite distributions
in the mutation and neutral sets. Interestingly, proline residues are
highly overrepresented among the substituting residues in the
mutation dataset, and underrepresented in the negative set.

Table 2. Amino Acid Distributions in the Pathogenic (Mutations) and Neutral (SNPs) Datasets

Wild-type residues/pathogenic variants Wild-type residues/neutral variants

Observed Expected w2 P-value Observed Expected w2 P-value

A 1224 252.5 3737.28��� 0.000 A 1852 1449.4 111.82��� 3.91E-26

C 943 468.1 481.79��� 8.71E-107 C 424 473.9 5.24� 0.022

D 950 988.7 1.52 0.218 D 991 1017.8 0.70 0.401

E 994 1449.8 143.32��� 5.02E-33 E 1273 1530.4 43.31��� 4.68E-11

F 537 766.1 68.53��� 1.25E-16 F 458 766.0 123.83��� 9.16E-29

G 2087 1355.0 395.42��� 5.46E-88 G 1182 1374.1 26.85��� 2.20E-07

H 554 528.8 1.20 0.273 H 530 555.0 1.12 0.289

I 642 911.4 79.64��� 4.49E-19 I 996 924.5 5.53� 0.019

K 497 1173.9 390.28��� 7.20E-87 K 774 1223.0 164.85��� 9.87E-38

L 1497 2068.4 157.84��� 3.35E-36 L 1270 2113.0 336.34��� 4.00E-75

M 520 435.5 16.39��� 5.16E-05 M 642 442.2 90.32��� 2.03E-21

N 605 754.4 29.59��� 5.35E-08 N 894 777.0 17.61��� 2.71E-05

P 1192 1252.8 2.95 0.086 P 1277 1323.3 1.62 0.203

Q 454 970.0 274.52��� 1.17E-61 Q 875 1028.1 22.79��� 1.81E-06

R 2797 1136.4 2426.45��� 0.000 R 2376 1168.5 1247.88��� 2.40E-273

S 1135 1681.4 177.55��� 1.66E-40 S 1648 1793.0 11.72�� 0.001

T 802 1087.9 75.12��� 4.42E-18 T 1482 1145.7 98.72��� 2.91E-23

V 919 1246.3 85.93��� 1.86E-20 V 1682 1263.7 138.46��� 5.78E-32

W 376 254.4 58.17��� 2.41E-14 W 167 251.8 28.54��� 9.17E-08

Y 610 553.1 5.85� 0.016 Y 377 549.8 54.31��� 1.71E-13

All 19335 19335 All 21170 21170

Mutant residues/pathogenic variants Mutant residues/neutral variants

A 622 1267.9 329.01��� 1.58E-73 A 1061 1388.20 77.12��� 1.61E-18

C 1233 563.5 795.45��� 5.26E-175 C 722 617.0 17.88��� 2.36E-05

D 900 633.9 111.67��� 4.22E-26 D 666 694.1 1.14 0.286

E 719 563.5 42.91��� 5.72E-11 E 825 617.0 70.14��� 5.53E-17

F 623 633.9 0.19 0.664 F 855 694.1 37.30��� 1.01E-09

G 922 1232.7 78.29��� 8.90E-19 G 1376 1349.6 0.52 0.473

H 918 633.9 127.29��� 1.61E-29 H 967 694.1 107.30��� 3.83E-25

I 619 950.9 115.85��� 5.14E-27 I 1139 1041.1 9.20�� 0.002

K 834 563.5 129.85��� 4.41E-30 K 1171 617.0 497.49��� 3.34E-110

L 1225 1796.1 181.62��� 2.15E-41 L 1390 1966.6 169.06��� 1.19E-38

M 534 317.0 148.61��� 3.50E-34 M 828 347.0 666.52��� 5.72E-147

N 662 633.9 1.24 0.265 N 845 694.1 32.81��� 1.02E-08

P 1609 1267.9 91.78��� 9.67E-22 P 1176 1388.2 32.44��� 1.23E-08

Q 808 563.5 106.09��� 7.05E-25 Q 1056 617.0 312.40��� 6.56E-70

R 2084 1831.4 34.85��� 3.56E-09 R 1431 2005.2 164.41��� 1.23E-37

S 1502 1796.1 48.17��� 3.91E-12 S 1691 1966.6 38.63��� 5.13E-10

T 1012 1267.9 51.64��� 6.68E-13 T 1517 1388.2 11.95�� 0.001

V 1195 1267.9 4.19� 0.041 V 1589 1388.2 29.05��� 7.07E-08

W 638 246.5 621.62��� 3.32E-137 W 471 269.9 149.78��� 1.93E-34

Y 676 493.1 67.88��� 1.74E-16 Y 394 539.9 39.41��� 3.44E-10

All 19335 19335 All 21170 21170

The chi-square values in italics identify residues that are underrepresented and the values in bold identify overrepresented residues in comparison to random distributions
derived theoretical codon usage frequencies. Significance levels are �Po0.05; ��Po0.01; ���Po0.001.
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Proline is a known secondary structure breaker [Chou and
Fasman, 1974] and therefore mutations to P are often pathogenic.

Performance of Prediction Methods

To evaluate the performance of the programs predicting the
pathogenicity of missense variants, we used six measures:
accuracy, precision (or positive predictive value, PPV), specificity,
sensitivity, NPV, and MCC. The values for these measures are
presented in Table 3 for all the missense variants. SNPs&GO
performed best in terms of accuracy (0.82), precision (0.90),
specificity (0.92), and MCC (0.65), but sensitivity was higher in
six other methods, and MutPred, Panther, PolyPhen2b, and SNAP
performed better in terms of NPV. nsSNPAnalyzer performed
worst in terms of MCC (0.19), accuracy (0.60), NPV (0.60), and
precision (0.59). The two versions of PolyPhen have very similar
overall performance; however, PolyPhen2 is recommended
because the quality measures are more balanced.. The version
classifying ‘‘Probably pathonegenic,’’ PolyPhen2a, as harmful is
somewhat better than the other option.

In Table 3, the results are presented for the subset of cases for
which structural information could be assigned. The performance of
all methods was generally worse except for sensitivity, which is better

for all methods. SNPs&GO performed best also in the structural
subcategory considering accuracy, precision, specificity, and MCC,
and MutPred was the best method in terms of sensitivity and NPV.

To test whether the poor performance was due to the smaller
dataset size we sampled the full dataset results for those cases for
which structural data was not available. We then compared the
average MCC values of the samples to those obtained for the full
dataset. The 100 sample datasets each contained randomly picked
1,000 neutral and 1,000 pathogenic variations. The average MCCs
of the sample datasets were comparable to the MCCs of the full
dataset in the case of Panther (average sample MCC 0.53), PhD-
SNP (0.43), PolyPhen2b (0.39), and SNAP (0.47). For the other
methods the MCC values were rather close when comparing the
full dataset to the subdataset. We conclude that the large
differences in the MCCs of the programs between the full dataset
and the set for which structures were available (Table 3) were not
due to the differences in the sizes of these datasets but were caused
by some other factors, that is, differences in the performance of
the methods when predicting on different types of data.

We also performed the analyses for a dataset that consisted only
of LSDB-derived mutations not found in SwissProt (Table 3). This
was done as some methods have been trained with Swiss-Prot
disease-causing mutations. Because all methods (except SNPs&GO),

Table 3. Performance of Prediction Methods

MutPred nsSNPAnalyzer Panther PhD-SNP PolyPhen1a PolyPhen 1b PolyPhen 2a PolyPhen 2b SIFT SNAP SNPs&GO

Performance of prediction methods (full data)

tpa 13829 4360 9689 11900 10093 14285 13807 16206 10464 16000 13736

fna 2507 2778 2859 6896 9185 4993 5102 2703 4856 2146 5487

tna 15891 1319 8676 16788 17669 13671 13863 10199 12188 8190 17028

fpa 4557 943 2797 4377 3199 7197 6010 9674 7433 6387 1382

cases 1a 16336 7138 12548 18796 19278 19278 18909 18909 15320 18146 19223

cases �a 20448 2262 11473 21165 20868 20868 19873 19873 19621 14577 18410

Accuracyb 0.81 0.60 0.76 0.71 0.69 0.70 0.71 0.69 0.65 0.72 0.82

Precisionb 0.79 0.59 0.76 0.75 0.77 0.68 0.71 0.64 0.64 0.67 0.90

Specificityb 0.78 0.58 0.76 0.79 0.85 0.66 0.70 0.51 0.62 0.56 0.92

Sensitivityb 0.85 0.61 0.77 0.63 0.52 0.74 0.73 0.86 0.68 0.88 0.71

NPVb 0.84 0.60 0.77 0.68 0.64 0.72 0.72 0.78 0.66 0.83 0.76

MCCb 0.63 0.19 0.53 0.43 0.39 0.40 0.43 0.39 0.30 0.47 0.65

Performance of prediction methods (3D structure)

tpa 5625 2857 3934 5041 4563 5980 5814 6726 4303 6751 5887

fna 517 1603 1009 2411 3074 1657 1842 930 1329 714 1746

tna 1101 569 735 1090 1361 1070 1163 843 904 700 1378

fpa 697 527 441 754 462 753 672 992 901 777 318

cases 1a 6142 4460 4943 7452 7637 7637 7656 7656 5632 7465 7633

cases �a 1798 1096 1176 1844 1823 1823 1835 1835 1805 1477 1696

Accuracyb 0.76 0.58 0.71 0.63 0.67 0.68 0.70 0.67 0.63 0.69 0.79

Precisionb 0.70 0.57 0.68 0.62 0.70 0.65 0.67 0.62 0.60 0.63 0.80

Specificityb 0.61 0.52 0.63 0.59 0.75 0.59 0.63 0.46 0.50 0.47 0.81

Sensitivityb 0.92 0.64 0.80 0.68 0.60 0.78 0.76 0.88 0.76 0.90 0.77

NPVb 0.88 0.59 0.75 0.65 0.65 0.73 0.72 0.79 0.68 0.83 0.78

MCCb 0.55 0.16 0.43 0.27 0.35 0.38 0.40 0.37 0.27 0.42 0.58

Performance of prediction methods (pathogenic dataset only from LSDBs, not in SwissProt)

tp 2240 1175 1368 1436 1651 2410 2190 2764 2131 2615 2547

fn 899 862 1252 2158 1943 1184 1361 787 1145 917 952

tn 2655 212 1508 2842 3004 2333 2334 1705 2073 1382 2898

fp 804 165 501 752 534 1205 1028 1657 1268 1069 259

cases 1a 3139 2037 2620 3594 3594 3594 3551 3551 3276 3532 3499

cases �a 3459 377 2009 3594 3538 3538 3362 3362 3341 2451 3157

Accuracyb 0.74 0.57 0.64 0.6 0.65 0.66 0.66 0.64 0.64 0.65 0.82

Precisionb 0.75 0.57 0.68 0.66 0.75 0.66 0.67 0.61 0.63 0.63 0.90

Specificityb 0.77 0.56 0.75 0.79 0.85 0.66 0.69 0.51 0.62 0.56 0.92

Sensitivityb 0.71 0.58 0.52 0.4 0.46 0.67 0.62 0.78 0.65 0.74 0.73

NPVb 0.73 0.57 0.61 0.57 0.61 0.67 0.64 0.70 0.64 0.68 0.77

MCCb 0.48 0.14 0.28 0.21 0.33 0.33 0.31 0.30 0.27 0.31 0.66

aTotal number of cases used by the given program (not normalized).
bAccuracy, precision, specificity, sensitivity, NPV, and MCC are calculated from normalised numbers.
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and not only the ones trained on Swiss-Prot data, performed worse
in this subcategory, we claim our results are not biased, even though
we acknowledge that a perfectly fair comparison between methods
trained on different datasets cannot be made.

To study the effect of residue types, the mutated and mutant
amino acids were assigned into six groups according to their
physicochemical properties: hydrophobic (C, F, I, L, M, V, W, and Y),
positively charged (H, K, and R), negatively charged (D and E),
conformational (G and P), polar (N, Q, and S), and A and T [Shen
and Vihinen, 2004]. There were small differences in accuracy and
precision of the methods for different types of wild-type or mutant
amino acids, but their sensitivity and MCC were dependent on the
physicochemical properties of the wild-type and mutant amino
acids (Fig. 1). The methods were more sensitive to mutations at
conformational, hydrophobic, and positively charged amino acids
than mutations at polar residues or A and T (Fig. 1). MCC differed
as well depending on the nature of the original residue position,
and substitutions at hydrophobic positions were predicted best by
most methods. Panther predicted mutations at hydrophobic and
positively charged residues with equal performance, and MutPred
and SNPs&GO performed better predicting conformational

residues. Mutations affecting negatively charged residues had the
lowest MCCs by most methods, except for PolyPhen1b, which
predicted other classes better than the conformational class, and
MutPred, nsSNPAnalyzer, and SNPs&GO, which had the lowest
MCC when predicting the effects of mutations altering A and T
residues (Fig. 1). The sensitivity and MCC of the methods also
varied in predicting the effects of different types of mutant residues.
All the methods performed best when the substituting residue was
charged, and in the case of nsSNPAnalyzer, polar residues were
predicted better than negatively charged residues, and SNAP
predicted polar residues better than positively charged residues.

Differences in prediction sensitivity could also be seen at the
level of individual amino acids. Predictions for substitutions at C,
W, and Y were clearly more sensitive than at other residues by all
methods (Fig. 2A). A similar trend was also seen when looking at
mutant amino acids: mutations to the aforementioned residues
were predicted with better sensitivity (Fig. 2A). The sensitivity of
PolyPhen2b and SNAP varied less at individual residues than that
of the other programs.

The results for the substitutions in the secondary structural
elements are shown in Figure 2B. All of the programs predicted

Figure 1. The values of the quality parameters, accuracy, precision, sensitivity, and Matthews correlation coefficient (MCC) for different classes of
substituted amino acids. A: accuracy, B: precision, C: sensitivity, and D: MCC. Abbreviations: Charge1, positively charged. Charge�, negatively charged.
[Color figures can be viewed in the online issue, which is available at wileyonlinelibrary.com]

364 HUMAN MUTATION, Vol. 32, No. 4, 358–368, 2011



the effects of substitutions at different secondary structures with
almost equal accuracy and precision. Sensitivity and MCC values
showed more variation with secondary structure. In terms of
MCC, MutPred, nsSNPAnalyzer, PolyPhen1b, and PolyPhen2b
predicted amino acid substitutions at strands best, whereas
Panther, PolyPhen1a, SNAP, and SNPs&GO performed best at
turns. PhD-SNP and SIFT predicted substitutions positioned at
a-helices best, and PolyPhen2a at coils. The differences in MCC
were not striking. Except for Panther, PhD-SNP, and SNPs&GO, all

methods were most sensitive when predicting the effects of amino
acid substitutions at strands. Solvent-accessible surface areas of the
positions did not markedly affect prediction accuracy or precision,
but all the methods were more sensitive when predicting the effects
of substitutions at buried positions (Fig. 2C). MCC for most
methods was better at exposed than buried positions, except for
PolyPhen1a and PolyPhen2a, which performed better at buried
positions. MCCs for PolyPhen1b and SNAP did not differ with
solvent accessibility of the position. These results are not in line

Figure 2. The values of sensitivity and Matthews correlation coefficient (MCC) for different types of amino acid substitutions. A: Sensitivity in
different amino acid residues. Left: mutated (original) amino acids, right: substituting (mutant) amino acids. B: Sensitivity (left) and MCC (right)
for amino acid substitutions at different secondary structural elements. C: Sensitivity (left) and MCC (right) for amino acid substitutions
according to the accessible surface area (ASA) of the position (buried ASA r10%, exposed ASA Z25%). D: Sensitivity (left) and MCC (right) for
amino acid substitutions at different protein structural classes. [Color figures can be viewed in the online issue, which is available at
wileyonlinelibrary.com]
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with a previous study [Mort et al., 2010], where a sequence
conservation based method yielded results of lower accuracy when
predicting the effects of solvent-exposed residues.

CATH classifies proteins as mainly a-helical or b-stranded,
mixed a- and b-structures (a–b), or as having few secondary
structures. Interestingly, none of the proteins included in this
analysis was assigned into the few secondary structures class.
The predictions differed with respect to sensitivity and MCC
depending on which protein class a mutation appeared (Fig. 2D).
Most programs were more sensitive to amino acid substitutions in
the a–b class of proteins, but SNPs&GO predicted substitutions
best in the mainly b-class. nsSNPAnalyzer predicted those
mutations occurring in a–b and a-helical proteins or domains
with equal sensitivity. MCCs varied significantly with the
structural class of proteins, especially in the predictions by
nsSNPAnalyzer, PolyPhen1b, PolyPhen2a, and 2b, and SNPs&GO.
The results were generally better for the a–b class of proteins, but
nsSNPAnalyzer predicted substitutions at a-helical proteins best
and SNPs&GO performed best with proteins in the mainly b-class.

To further evaluate the performance of the programs we
compared them in a pairwise fashion (Table 4). The numbers of
cases that were shared by the programs varied because the number
of cases that could be predicted by each program varied as described
in the Materials and Methods section. The largest percentage of
correctly predicted cases by two programs was 68.2% (for the
combination of MutPred and SNPs&GO). On average, the fraction
of correctly predicted cases between any two programs was 57.7%.
The correlations between two programs were highest for MutPred
and PhD-SNP (0.57), and for PolyPhen 1 and 2 (0.57 for the less
stringent b versions, and 0.56 for the a versions) (without taking
into account the higher correlation between PolyPhen1a or 2a and
PolyPhen1b or 2b that are different forms of the same program).
Correlation was lowest for nsSNPAnalyzer and SNPs&GO (0.25).

Discussion

In this study we evaluated how reliably the pathogenicity of
missense mutants can be predicted, and whether selected features

of the variant or the structural context affect prediction
performance. The processing of the vast and increasing amount
of genetic variation data requires the development of automatic
annotation tools to determine the potential pathological character
of a given variant. Prioritizing the most interesting and likely
pathogenic cases for experimental analysis is another important
application of the tested prediction methods.

To our knowledge, no comprehensive evaluation of the
performance of missense variant pathogenicity predictors has
been made outside the performance studies of individual methods
in the context of their development. We selected test sets that have
not been used in the training of the methods as such, but a subset
of the pathogenic dataset is comprised of mutations from Swiss-
Prot, and some methods (MutPred, nsSNPAnalyzer, PhD-SNP,
PolyPhen2, and SNPs&GO) have used Swiss-Prot mutations in the
training of the method. Testing of the performance of a method
with the same cases it was trained on would lead into biased
results, so that those methods trained on SwissProt mutations
would have an advantage over the other methods. However,
because the pathogenic dataset includes a large number of LSDB
variations not found in SwissProt, we claim the test set was not
similar to the training sets to the extent that it would advantage
those methods trained on SwissProt data. Further, we tested the
methods with cases coming only from LSDBs. With this dataset
the performance decreased with all methods, whether trained on
Swiss-Prot data or not, except for SNPs&GO. This indicates that
the good performance of SNP&GO was not a result of that it has
previously been exposed to the test dataset during its training
phase. Furthermore, the poor performance of PhD-SNP indicates
the method did not benefit from the possible identical cases in the
data used for training and testing. However, it is impossible to
construct a large testing dataset that would not share any cases
with the original training sets of any of the methods, especially
when the specific contents of the training sets are rarely published.

The neutral dataset was generated from dbSNP entries that had
a frequency higher than 1% when there was data at least for 25
individuals (50 chromosomes). This way the number of false
negatives could be minimized in the test set.

Table 4. Pairwise Prediction Correlations

MutPred nsSNPAnalyzer Panther PhD-SNP PolyPhen 1a PolyPhen 1b PolyPhen 2a PolyPhen 2b SIFT SNAP SNPs&GO

MutPred 8721 22645 36300 36522 36522 35198 35198 32705 29674 34066

nsSNPAnalyzer 4620 7237 9225 9380 9380 9353 9353 8270 8609 9145

Panther 15296 3589 23671 23869 23869 23406 23406 21540 20713 22555

PhD-SNP 23955 4389 14838 39659 39659 38254 38254 34532 32203 37095

PolyPhen1a 22125 4386 13961 22756 40146 38485 38485 34683 32533 37324

PolyPhen1b 22208 4965 14701 22170 23764 38485 38485 34683 32533 37324

PolyPhen2a 22234 4777 14728 21871 22383 23156 38782 33686 31790 36317

PolyPhen2b 20911 5012 14288 20042 19656 22412 24006 33686 31790 36317

SIFT 18807 4302 12623 18879 18207 18985 18645 17833 28726 32434

SNAP 18877 4750 13307 18004 17024 19811 19321 19945 16393 30987

SNPs&GO 23220 4672 14285 23333 22544 22206 22042 20569 18135 18833

MutPred 53.0 67.5 66.0 60.6 60.8 63.2 59.4 57.5 63.6 68.2

nsSNPAnalyzer 0.36 49.6 47.6 46.8 52.9 51.1 53.6 52.0 55.2 51.1

Panther 0.54 0.37 62.7 58.5 61.6 62.9 61.0 58.6 64.2 63.3

PhD-SNP 0.57 0.35 0.51 57.4 55.9 57.2 52.4 54.7 55.9 62.9

PolyPhen1a 0.43 0.44 0.46 0.45 59.2 58.2 51.1 52.5 52.3 60.4

PolyPhen1b 0.43 0.47 0.50 0.43 0.66 58.2 58.2 54.7 60.9 59.5

PolyPhen2a 0.49 0.44 0.51 0.45 0.56 0.58 61.9 55.3 55.3 60.7

PolyPhen2b 0.44 0.42 0.49 0.40 0.46 0.57 0.72 52.9 62.7 56.6

SIFT 0.41 0.53 0.48 0.45 0.45 0.52 0.50 0.51 57.0 55.9

SNAP 0.46 0.41 0.51 0.44 0.44 0.54 0.52 0.53 0.53 60.8

SNPs&GO 0.50 0.25 0.39 0.44 0.39 0.38 0.38 0.34 0.34 0.39

Upper table: the number of cases shared by two programs (upper right triangle). The number of cases predicted correctly (lower left triangle). Lower table: The number of cases
predicted correctly, reported as a percentage (upper right triangle). Pairwise correlation (lower left triangle).
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There are still other pathogenicity predictors that we did not
evaluate. SNPs3D [Yue et al., 2006] was not included in this study
because it does not allow submission of user-defined amino acid
substitutions. Similarly, LS-SNP [Karchin et al., 2005] is an
annotated database of SNPs, not a prediction method for any
user-provided variant, although often referred to as a prediction
method for nsSNP pathogenicity. The Auto-Mute predictor of
disease potential of human nsSNPs [Barenboim et al., 2008] was
left out from the analysis because the program did not allow batch
submission. PMut [Ferrer-Costa et al., 2005] could not be tested
because the server did not return predictions.

Overall, we found SNPs&GO and MutPred to be clearly the most
reliable predictors for our dataset of genetic variants. The accuracies
of all the methods were in the range of 0.60–0.82, and precision
ranged from 0.59 to 0.90. More variation among the methods was
seen when considering the sensitivities and MCC values that ranged
from 0.52 to 0.88 and 0.19 to 0.65, respectively. The local structural
context of a mutated residue did not dramatically affect predictor
performance in most cases but most methods showed variance in
their prediction power at the level of protein tertiary structure
classification and at different mutated positions.

Studies have shown that combining information obtained from
the multiple sequence alignment and three-dimensional protein
structure can increase prediction performance [Bromberg and
Rost, 2007; Saunders and Baker, 2002]. According to our results,
this is not always the case. Panther operates solely on sequence-
based evolutionary information, and it is one of the best
performing methods, outperforming all the methods incorporat-
ing structural information in the prediction, except for MutPred,
which uses sequence-derived structural predictions as features in
combination with evolutionary information. Furthermore,
although nsSNPAnalyzer uses the SIFT method for the evolu-
tionary analysis and also includes structure-derived features, its
overall performance is below that for SIFT, except for an increase
in specificity in the structure subset of data. However, the two best
performing predictors include both protein structural or func-
tional and MSA-derived information in the prediction.

It is very difficult to determine whether the notable differences
in the performance of these methods are caused by differences in
the features utilized by the methods or the training datasets. For
example, SNPs&GO uses GO annotations as a feature, and GO is
biased toward genes involved in diseases. The PDB is biased as well,
containing structures of mostly well-studied proteins, which
include products of disease-related genes. Therefore, one would
expect SNPs&GO would perform better in predicting the effects of
missense variants in proteins that have structures in the PDB as
they are likely to have GO annotation as well—and in fact, it
performs worse. One factor that very probably affects prediction
reliability is the quality of multiple sequence alignment. Because all
of the methods studied here use MSA as input to the prediction,
the quality of the provided MSA should be very carefully assessed.
For many of the methods, we did not find documentation how the
MSA is constructed when the user provides just the query sequence
as input. For example, an automatic BLAST search often performed
by the programs may lead into construction of an MSA that
contains multiple versions of the same sequence or paralog
sequences, affecting the resulting conservation analysis. The MSA
should contain a selection of closely and distantly related sequences
in order to effectively yield a conservation signal.

In conclusion, those methods that performed best had high
accuracy (reaching 0.82, SNPs&GO), precision (0.90, SNPs&GO),
specificity (0.92, SNPs&GO), sensitivity (0.88, SNAP), and NPV
(0.84, MutPred). Matthews correlation coefficient reached the

value of 0.65 at best (SNPs&GO). There is no single method that
could be rated as best by all parameters, so the user should
consider what aspects would be most valuable considering the
nature of the data analysed. Furthermore, some methods require
3D structure coordinates, limiting the number of cases that can be
analyzed (nsSNPAnalyzer), and some methods are at least
currently too slow for high-throughput analyses (SNAP).
Although some of the existing methods perform reasonably well,
development of new, more reliable methods is certainly needed.
Complementary methods could be combined in a metaserver to
yield more reliable predictions.
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